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NON-EOUILIBRIUM AND DIFFUSION :
A COMMON BASIS FOR THEORIES OF CHROMATOGRAPHY*

_ J J CALVIN GIDDINGS
Depar Inzent of Clrcmzstw, Uuniversity of Utal, Salt Lake City, Ulalh (U. S.4 )

- INTRODUCTION .

There are three theories commonly used to describe the position and structure of:
bands in chromatography (we limit our discussion to cases involving linear sorption -
' isotherms; i.c., nearly all partition chromatography). These are the theoretlcal-plate "
" model!; 2, the conse1vatioﬁ of material approach®4%, and the stochastic theory®67, )
- The materml-conservatlon approach and the stochastic theory are very closely .
‘ ;rela.tcd For this reason they have been collectively termed as “rate’ theories®, With .
a given set of kinetic parameters describing transitions between phases (mobile and
‘statlonary) it is the scope of these theories to predict the structure of the clutlon“
” curve. The relative advantage of one theory over the other depends upon the ease of
" application to specific examples. | i
The theoretical-plate model (¢ plate” theory) is of adifferent nature.The parameter ‘
(I TETP)forthis model must be measured in a given experiment.The model then descrlbes,'
- the developmcnt of a chromatogram in terms of this parameter and the R value*™
o These two areas of approach can be compared to the relationship between sta.tlstlca.l .
- niocha,nlcs and thermodynamics. The former depends on specific information concerning
 microscopic events in order to derive macroscopic results, while the latter concerns
- general rules, equally valid for simple and complex underlying microscopic behavior, .
. ~This relationship between the rate and plate theories tells us beforehand the
. hm1ta.t10ns of a treatment. comparing them. Since no klnetlc pararnetors enter the‘:
‘ plate theory, the results of this theory cannot be directly checked against those of the-
'rate theories. However, a comparison of the results yields a relationship between |
(HETP) and the kinetic parameters, The treatment presented here is more fundamen-
tal than this. Instead of starting with the results (elution or band structure) of plate.
. theory, we have gone back to the basic concept that the chromatogram can be divided
~into discrete cells, and that the length of the cell (HETP) is related to an equilibrium-
condition »between the content of the cell and its effluent. The latter re‘lationship,’_

o Th1s mvestlgatlon was supported by a research grant RG-5317, from the N a.tlona.l Instltute
of Health, Public Health Service. ‘ i
i ** We will hereafter use R as the equilibrium ratio of the amount of solute in the mob11e ph'lse\
to the total amount of solute. We may also interpret R as (1) the probability that a particular
. molecule at a given instant is in the mobile phase, or (2) the ratio of the velocity of the center.of.
‘the band of solute, u, to the average velocity in.the mobile phase, v. For one-dlmcnslonal ﬂow
" ({.e; not cu'cula,r chromatography) R may usually be equated to IEF
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since it concerns non-equilibrium kinetics, can be directly compared to the results of

the kinctic relaxation-time model®. This method not only yields the desired relation‘ship
‘between (HETP) and the kinetic parameters, but illustrates the nature and limitations
‘of the theoretical-plate model as applied to chromatography and related procedures.

The relationship between the rate theories is different, since they can be directly
checked against one another. There are two ways to effect this comparison. Following
an obvious method, we could stipulate a given set of boundary conditions relating to
column input, obtain solutions by the two methods, and directly compare them. This
method will be used in later publication. We have found a method that gives far better
illustration of chromatography as a non-equilibrium phenomenon. One restriction is

‘necessary, but this is a very practical one. Our treatment is restricted to those cases

where the departure from equilibrium is not large. Once this is allowed, the treatment

- becomes very general in that it does not depend upon a particular set of boundary

(input) conditions. This is done simply by relating the structure of the band to an

effective diffusion coefficient, given in terms of the kinetic parameters. Itis suggested

that the spreading of bands due to this process be termed chromatodiffusion. followmg

an analogous term of MysELs?® (Electrodiffusion).

Other effects are operative in chromatography that cause spreading of component
bands®. Ordinary molecular diffusion in the longitudinal direction is always occurring,
both in the mobile and stationary phases, though the latter may be negligible. The

flow of 'solvent through a porous media always adds an additional diffuseness (the

so-called eddy diffusion) to an included solute band!!, Both of these two effects can

~ be computed in theory just as chromatodiffusion can. It is then necessary to add the

individual diffusion coefficients together to obtain the overall coefficient for diffusion
in the chromatogr am. Inworking with the theoretical plate model, it has been shown
that (HETP) is the sum of three terms, each stemming from a single one of the above

~sources of diffusion®. In the treatment here we will be concerned with chromato-

~ diffusion, and thus the diffusion coefficient D and (HETP) that we discuss w111 simply
- be. the contribution due to kinetic effects.

Any of the above cffects can be important in chromatogfaphic separations,

- 'although in those procedures where the flow velocity is unduly increased for rapid

. »completlon of the process, the kinetic effects dominate. For gas chromatography, thc

- relative values have been experimentally determined® 12,

i

“» ‘The stochastic theory of chromatography is concerned with the movement of a single

It would be clearly advantageous, in many cases, to consider chromatoglaphy,
from the bcgmmng, as a diffusion process. The voluminous literature concerned with

‘the solutions of the diffusion equation can be 1mmed1ately applied to a multltude ot

boundary conditions for chromatography.

“THE STOCHASTIC THEORY

molecule through a chromatographic column. The successive sorptions and desorp-

tions are comparable to random walk processes, and mark a fruitful field for the
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applicatidn‘ of probability theory. It is to be noted that the problem of equilibrium
~ within the chromatogram arises only in a very limited sense from the point of view of
- thestochastic theory. This results since the theory, for the most part,is concerned only .
with:the time-dependent behaviorof single molecules, However, if amolecule is applied
to the column in the mobile phase, then the probability that the molecule will be found
, in the mobile phase is unity at the instant of application, and asymptotically approaches -
R as time elapses. This probability is related to equilibrium; the relaxation time for the
approach of the probability to its asymptotic value is identical to the relaxation time
for the approach of a large collection of molecules to their equilibrium values.

The point of real interest in chromatography, however, concerns equilibrium only
in a local sense. In any useful chromatogram, the total concentration of solute in the
mobile phase divided by the total concentration, for any calculational purpose, equals.
R. However, at a given point on the chromatogram, local equilibrium does not obtain,
and a deficiency of concentration in the mobile phase at one point is balanced by a
surplus at another point. We will expand on these concepts in our discussion of the
1nater1al—conservat10n approach, since there we will find it necessary to qu’mtltatlvcb
evaluate the local non-equilibrium effects.

In'a previous publication, chromatography was considered as a diffusion process!3,
Through expanding the probability density function in a Taylor series along the
lengthwise coordinate, the diffusion concept was found to be valid whenever the
~ average number of sorptions is large. The validity of the diffusion concepts can be

more fundamentally shown by the methods used by EINSTEIN concerning Brownian
 motion!. Itis shown in that treatment that diffusion results from a large number of
independent, random displacements. The conditions are the same, since each sorption
is independent of the previous one, and the large number of them is stipulated.

“When the diffusion conditions are fulfilled, the diffusion coefficient for a band on
the column, due to kinetic effects (chromatodiffusion), i
: Ryl gut ‘ K
where v is the longitudinal component of flow velocity, and %, and %, are the average
number of sorptions and desorptions, respectively, in unit time.

D =

THE MATERIAL-CONSERVATION APPROACH

Slncc the following tr catment is concerned with general systems involving reaction |
kinetics, it is necessary to outline chromatography as a kinetic system. It has been’
' shown that the kinetics of chromatography can be reduced to that of sdmple kinetic
analogs The simplest one, adequate in most cases, is

Adiagp | (2)

kg

. .where A rep1 esents a molecule in the mobile phase, and B a molecule in the statlonary,;
phase. The arrowsindicate the continuous transition between the two ‘configurations”,
The transition ra.tcs %y and kg, have been defined. TR
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' In order to discuss both the material-conservation approach and thc theoretical-
plate ‘model, it is necessary to use a method for treating the kinetics of chemical
systems near equilibrium. The relaxation-time model for chemical kinetics? has been
‘devised for this purpose, and is easily adapted to the treatment of chromatographic
. processes. :
If the concentration, ¢;, of a chemical species, A, is perturbed slightly from its
' equlhbrlurn value (more generally, from its quasi-equilibrium value), it will return to
the equilibrium in the manner of exponential relaxation. The relaxation time, ¢,
for this process can be easily obtained®.

-
_ 6 —c . \
=g d (3)
where ¢,* is the equilibrium concentration of A. :
Referring, now, to the kinetic model of this section, A represents a moleculein

the mobile phase, and its equilibrium concentration is

' . k.zc,‘,,“' ‘

6y = = ‘ (4)
wherec,* is the concentration of B, and the stars denote the equilibrium. All concen-

‘trations are referred to a unit volume of the overall chromatogram. For this model,
~ the relaxation time is found to be.

ty = 1[(hy + k) (5)

Let us examine a small volume of carrier fluid as it passes along the chromatogram.

We will assume that the concentration, ¢;, in this element is near the equilibrium

value, ¢,*. However, ¢,;* varies as the volume element moves along the column. The

concentration, ¢4, lags behind ¢,*, since equilibration is not instantaneous. It is shown

elsewhere® that the time lag is just the relaxation time for equilibrium, #,. This is
described by the equation '

¢y (z,8) = ¢," (2,0 — tr) ‘ : (6)

where ¢, (2,t) is the concentration in the moving volume element at the point z and
the time ¢. In the discussion of the theoretical plate model, it will be shown that the
concentration ¢, (z,f) may be considered equal to the equilibrium concentration,
either at a time ?, past, as above, or'at the same time but a distance v4, (1 — R)
upstream. ‘

¢y (at) = ¢," (¢ — vty (1 — R),1) (7)

From this‘equation it is neéessary to find the equilibrium departure in the mobile
-phase, defined by dc; = ¢; —¢,*. (This is the negative of the equilibrium departure
in the stationary phase, since d¢; - decgy = 0.) ‘

dc, = ¢;” (¢ — vty (1 — R),l) — ¢t (&)
==t (1 - ) | (8)

- Both Aal and d¢,*/d62, of course, are evaluated at the distance z and time . The lattel

N 1elat10n holds for values of ¢y, and hence 4c¢y, that are small.
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Fig. 1illustratesthe application
of this equation to asoluteon a
chromatographic column. The
Nonequilibrium mobile phase moves in the
displgt':er(r:grg; direction, 2, along the column.

' It is seen that the actual con-
centration, ¢;, is displaced
downstream from the equi-

z— librium concentration, ¢;*, a,

Fig. 1. Schematic diagram showing the shift of the actual djstance, vé, (1—R),equivalent
mobllc phase concentration, ¢, dow nstream from the equi- - . . ‘

librium concentration, ¢, *. to a time, 4. The figure shows.

how the departure from local
equilibrium varies from one point to another on the column.
The mathematical expression of the equilibrium departure is particularly simple
when the concentration profile is “Gaussian’ or “normal”. If we divide each side of
equation (8) by ¢,* we get the fractional departure

dey -9“;61 vl (1 — R) (©)

+ =

6Lt
Since ¢;* is a definite fraction of the total concentration, it too is Gaussian.
" (s-%)°
¢y = const. ¢” g~ . (10)
Whenever such a peak results from diffusion, the standard deviation and the diffusion

coefficient are related by 02 = 2 D¢, Usmg this and taking the derivative dln ¢,*/6z
we have

AGJ.__ (I—-—-J?) (z—3) ‘ ‘ :

o = U T b (x1).
Forthe A= B model we may use D from equation (z), , from equation (5), and as the
fraction of time spent in the mobile phase, R = k,/(%; + %5). The resulting expression is

AC]_ 2—3Z
c*,  zRut

(12)

the term Rv is the average velocity of the zone and this multiplied by the time ¢ is
the displacement of the zones center, z. The final simple result is

AC] z—73

e * 2%

(;3) ‘

This shows the departure from equilibrium to be a function of the distance z along
the chromatogram. At the center of the zone it approaches zero. It can also be shown'
that at a distance ¢ from the center of the zone, 2 — 2z = o,

dey 1

| PV ()
where N is the theoretical plate number occﬁpied by the center of the zone. The
results given in the last two equations are valid with any kinetics as long as a ty can
be found for the system | '

Pe/erencas P. 5°
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It can now bc ea511y shown why the spreading (diffusion) of a band is related to
non-cqulhbrlum values. At the center of the band, the departure from equilibrium is
negligible. This portion of the band is displaced down the column with a velocity,
# = Rev. On the upstream (trailing) side of the band, the concentration is less than
equilibrium. This deficiency in the mobile phase causes this part of the band to move
more slowly than the center. On the other hand, the surplus concentration on the
- downstream (leading) side of the band causes this part to move more rapidly than the

center. The net result is the spreading of the two edges away from the center.

- For a quantitative formulation, we will refer our calculations to a point moving
downstream with the average velocity of the band, % = Rv. The flux 6f material
through a unit area of a plane that is perpendicular to the flow direction and includes
this point consists of contributions from all possible phases containing the solute,

| g = X ciug, ‘ (rs)

where ¢; is the concentration in phase ¢, and ; is the average velocity of this phasc

with 1espect to the reference point. For most cases itis ample to consider just a single

mobile phase (phase 1), and a single stationary phase (phase 2). For the velocities in

the last equation, we have #, = v — % = (I — R) v, and #y, = — % = — Rv. The
| ﬂu\'; then, is

q=v[c; (1 — R) — ¢, R] (16)
and since (c:1 - ¢y) cqua.ls the total concentration, ¢ |
| g = v (e, — Re). - (17)
Using the definition of d¢; and the equilibrium expression, ¢,* = Rc¢, we have
q = vdcy (18)

A‘i equilibrium, of course, d¢; = 0 and the net flux vanishes.
- The value of 4dc¢, in this equation for the net flux can be obtained from equation
(8). Substitution yields

v, (1 — RR), | (r9)

“and since ".1* = Re¢, then ‘ Se
‘ L VLR (1 —R) = —D — ‘ (20)
7= Oz ret oz -

the latter relation results since D can be so defined in terms of the net flux, g. Hence
~a very general expression for the effective diffusion coefficient for this process is ,
D= 1R (1 — IR) (z21)

This equation can be more specifically written in terms of the kinetic analog, (2). For
this particular analog, # = 1/(%, -+ %,), and R = Iky/(k,; + k). With these substitu-

. . _ .
tions, (21) becomes oo g0®

.v . D = TR AE | (22)

~a result identical to that derived from the stochastic theory.

| An appxoach similar to the above has been used in the description of boundary
'sprc_admg in electrophoresis!®. The mathematics of electrophoretic and chromato-
~graphic spreading are the same!, In either case an interconversion of species exists
AW1th the various spec1es moving at different velocities. The interconversion: reactmn
T’efalenre /7 52.
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may be as simple as A == B or much more complicated for either electrophoresis or
chromatography. When this simple reaction occurs in electrophoresis the effective D
is the same as in equation (22) except that v, must be replaced by (v, — v,)% The
latter are the respective velocities of the ionic species. This result is not the same as”
that obtained in the work of F1ELD AND OGSTON1S,

THE THEORETICAL-PLATE MODEL

The theoretlcml-plate model serves to relate chromatography to cla.ssu:ml dlStan.tlon‘
procedures.” For a given experiment under given conditions, the development of a
chromatogram is related to an empirical parameter, (HETP), or the height equivalent
to a theoretical plate. With a given column length, L, the number of theoretical plates,
N, is simply obtained as L/(HETP).

We will relate the parameters, (HETP) and XV, directly to the kinetic parameters
involved in the other theories. This, of course, is exceedingly useful, since the theoretQ ‘
ical-plate model has had the disadvantage of not being related to fundamental physical
quantities, such that, for instance, one could not find an expression for the temperature
dependence of N even though itis known for the kinetic rates of the underlying processes.

The theoretical-plate model is obtained by dividing the chromatogram into

discrete, adjacent cells. The length of a cell, (HETP), is determined by the condition
that the mean concentration in the cell is in equilibrium with its own effluent. For
small (HETP), the concentration at the midpoint of the cell is approximately equal
‘to the mean concentration. Thus (HETP) is determined by the condition that the
midpoint concentration is in equilibrium with the small volume element leaving the
cell. However, the small volume element, according to equation (6), isin equilibrium
with the point on the column crossed a time, ¢, previously. Since the flow velocity
within the column is v, this equilibrium point is the distance v¢, upstream, and this
must be the distance between the end of the cell and its midpoint

HETP e
Ul = (—:—-)' (23)

Thus we have (HETP) = 204y, N = t;]/2¢ty (24)

Where L/v is ¢,, the passage time of the carrier through the chromatogram. This is
the most general expression of the theoretical plate parameters in terms of kinetic
‘processes. For the A = B kinetic model, equation (2), we have (see equation (5))

‘ ‘ (HETP) = 20/(k; + k), N = (hy + k) 4,]2 (25)

These equations can be easily verified. This is done simply by comparing the
band half-width obtained by MAYER AND ToMPKINS?, expressed in terms of IV, to the
half-width obtained in the use of the stochastic theory For the A = B muodel, the
result is identical to (25). ‘

. It has been tacitly assumed in the foregoing treatment that the volume clcment
lcavmg a cell is in equilibrium with the midpoint cell concentration, not as it has
been modified by incoming fluid, but as if it had remained constant as the volume
.Refewnccs 1; 52
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eclement moved through the cell. Thus we have treated the MavyER AND TOMPKINS2
discontinuous flow model of chromatography. The continuous-flow model, introduced

by MARTIN AND SyNGE!in the original theoretical plate treatment of chromatography,
is a better physical model. Our method for relating N to the kinetic rates involves, in

this case, the additional concept of concentration displacement.
~ For a small downstream displacement of the mobile phase, say a distance vé,,

a given segment of the overall concentration profile will move downstream a distance
¢,9 /(61 -+ ¢g). Since the concentrations ¢, and ¢4 are near their equilibrium values,
the concentration displacement is approximately Rwuf,. The relaxation-time model

states that the concentration of a given volume element is the equilibrium concentra-

‘tion of that volume element a time ¢, previously. At that time the volume element was

a distance v#, upstream. However, as the volume element moved downstream from
this point a distance v¢,, the overall concentration, which determines the equilibrium,

- moved the above quoted distance of Rvf,. The distance between these displacements,

vty (1 — R), becomes, in this formulation, the distance from the midpoint to the end
of the cell. | |

| | QLE_’}’_) = oy (1 — R) (26)

In this Case"t'hen (HETP) = 2ty (1 — R), N = ty/2tr (1 — R) (27)
and for the A = B model, with t, = 1/(k; + k,) and R = &,/(k; + k), we have

(HETP) = 2k,v[(ky ~+ %)%, N = (ky + k)2 ty]2k, (28)

~ The latter expression results when the half-width for the continuous-flow model is

compared to that from stochastic theory. We have used an expression derived by
Sarmn'® for this comparison.

DISCUSSION

‘The foregoing treatment relates both an effective diffusion coefficient and the number

of theoretical plates to the kinetics of sorption and desorption. For practical purpose,
it isnecessary that these parameters be related to experimental procedure. This matter
has been extensively discussed in the case of the number of theoretical plates?’.

It is common practice to inject a sample into a chromatogram with the least

| possible spread. In the limit we may consider all molecules started simultaneously in

the column. When, in addition, near-equilibrium conditions prevail, the concentration

- profile becomes Gaussian, both when the component is spread as a band on the column,

and in the column effluent. A measure of the diffusion effect is the standard deviation
of this concentration profile. In general a procedure will become more valuable as the
ratio of the standard deviation to the displacement from the origin (referred to the

~center of the band) becomes smaller®. With a component still on the column, the

standard deviation is ¢ = 4/2D% (for any diffusion process), and the distance of the
band from the origin is 2 = %/ = Rvt. Substituting in the appropriate values from the

« Kkinetic analog, (2), we find that the dimensionless ratio, 4 = ¢/z, is

References p. 52.
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- In the case of elution, the standard deviation is usually measured in terms of
time. The displacement from the origin, the elution time, ¢, is of the same dimensional-
ity. For the kinetic analog, (2), the former is®" |

= (2h ROV2[Ry = [2k t]kg(lt, + f,)]Y" (30)

and the ratio, A = ¢/¢, is identical to (29).
| The value of 4 can be easily obtained for the theoretical-plate model. Substltutmg )
= Rt into (28) and comparing with (29), we find, 1 = I/\/ ‘
With the foregoing results, and the experimental values for both A and R, itis-
easy to determine the kinetic rates of transition, kyand %, It is then possible to study
the dependence of the transition rates upon temperature, solvent and sorbent prop-
erties, etc. Such a study shows promise of additional control over the movement of
chromatographic zones. |

SUMMARY

It has been the object of this presentation to show connecting links between the
various theories of chromatography. The stochastic theory, the material-conservation
approach, and the theoretical-plate model are treated individually and in relation to
one another. The last two are treated as problems in non-equilibrium kinetics,
exemplifying the concept that it is the lack of equilibrium between the mobile and
stationary phases that causes the smearing of individual solute bands. The source of
the non-equilibrium, as well as the smearing effect due to non-equilibrium, are
discussed both qualitatively and quantitatively. The quantitative treatment of these
cases depends on the use of the kinetic relaxation-time model, originally devised for
the study of non-equilibrium kinetics in the flame front.
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