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NON-EQUILIBRIUM AND DIFFUSION: .. 
A COMMON BASIS FOR THEORIES OF CHROMATOGRAPHY* 

1 r;; 
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INTRODUCTION 

There are three theories commonly used to describe the position and structure of. 
bands in chromatography (we limit our discussion to cases involving linear sorption’, 
isotherins; LG., nearly all partition chromatography). These are the theoretical-plate 
modell:z, the conservation of material approach31 *, and the stochastic theory5~0~7. 
The material-conservation approach and the stochastic theory are very closely 
related. For this reason they have been collectively termed as “rate”’ theorie@. With 
a, given set of kinetic parameters describing transitions between phases (mobile and 
stationary), it is, the scope of these theories to predict the structure of the elution 
'curve. The relative advantage of one theory over the other depends upon the ease of 
application to specific examples. 

The theoretical-plate model (“plate” theory) is of a different nature.The parameter 
(I-IETP) for this model must be measured in a given experimentThe model then describes 
the development of a chromatogram in terms of this parameter and the R value**. 

These two areas of approach can be compared to the relationship between statistical 
mechanics and thermodynamicsThe former depends on specific information concerning 
microscopic events in order to derive macroscopic results, while the latter concerns 
general rules, equally valid for simple and complex underlying microscopic behavior, 

This ,relationship between the rate and plate theories tells us beforehand’ the 
,: limitations of a treatment comparing them. Since no kinetic parameters enter the. 

plate ,theory, the results of this theory cannot be directly checked against those of the 
rate theories. However, a comparison of the results yields a relationship between 
(HETP) and the kinetic parameters. The treatment presented here is more fundamen- 
tal than this. Instead of starting with the results (elution or band structure) of plate. 
theory, we have gone back to the basic concept that the chromatogram can be divided 
into discrete cells, and that the length of the cell (HETP) is related to an equilibrium 
condition between the, content of the cell and its effluent. The latter relationship, 

l This investigation was supported by a research grant RG-5317, from the National Institute 
of Health, Public Health Service. .:R 

l * We will hereafter use R as the equilibrium ratio of the amount of solute in the mobile phase+ 
to the total amount of solute. We, may also interpret R as (I) the probability that a particular; 
molecule at a given instant is in the mobile phase, or (2) the ratio of the velocity’ of the center .of 

“the band of solute, zb, to, the average velocity in the mobile phase, v. For one-dimensional flow. 
(Le; not circular ch,romatography) R’may usually be equated to RF. : 
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since it concerns non-equilibrium kinetics, can be directly compared to the results of 
the kinetic relasation-time model O. This method not only yields The desired relationship 
between (HETP) and the kinetic parameters, but illustrates the nature and limitations 
of the theoretical-plate model as applied to chromatography and related procedures. 

The relationship between the rate theories is different, since they can be directly 
checked against one another. There are two ways to effect this comparison. Following 
an obvious method, we could stipulate a given set of boundary conditions relating to*_ 
column input, obtain solutions by the two methods, and directly compare them. This 
method will be used in later pu’blication. We have found a method that’ gives far better 
illustration of chromatography as a non-equilibrium phenomenon. One restriction is 
necessary, but this is a. very practical one. Our treatment is restricted to those cases 
where the departure from equilibrium is not large. Once this is allowed, the treatment 
becomes very general in th,at it does not depend upon a particular set of boundary 
(input) conditions. This is done simply by relating the structure of the band to an 
effective diffusion coe%ficient, given in terms of the kinetic parameters. It is suggested 
that the spreading of bands due to this process be termed chromatodiffusion following 
an analogous term of M.YSELS~~ (Electrodiffusion). 

Other effects are operative in chromatography that cause spreading of component 
bands”. Ordinary molecular diffusion in the longitudinal direction is always occurring, 
both in the mobile and stationary phases, though the latter may be negligible. The 
flow of ‘&vent thorough a porous media always adds an additional diffuseness (the 
so-called eddy diffusion) to an’included solute band ll. Both of these two effects can 
be computed in theory just as chromatodiffusion can. It is then necessary to add the 
individual, diffusion coefficients together to obtain the overall coefficient for diffusion 
in the chromatogram.. In working with the theoretical plate model, it has been shown 
that (HETP) is the sum of three terms, each stemming from a single one of ihe above 
sources of diffusion8. In the treatment here we will be concerned with chromato- 
diffusion, and thus the diffusion coefficient D and (HETP) that we discuss will simply 
be the contribution due to kinetic effects. 

Any of the above effects can be important in chromatographic separations, 
although in those procedures where the flow velocity is unduly increased for rapid 
completion of the process, the kinetic effects dominate. For gas chromatography, the 
relative values have been experimentally determined”9 12. 

It would be clearly advantageous, in many cases, to consider chromatography, 
from the beginning, as a difEusion process, The voluminous literature concerned with 

‘the solutions of the diffusion equation can be immediately applied to a multitude of 
boundary conditions for chromatography. 

TI-LB STOCHASTIC TH~EORY 
pw; 

‘*‘?:, The stochastic theory of chromatography is concerned with the movement of a single 
molecule through a chrornatogrsphic column. The successive sorptions and desorp- 
tions are comparable to random walk processes, and mark a fruitful field for the 
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application of probability theory. It is to be noted that the problem of equilibrium 
within the chromatogram arises only in a very limited sense from the point of view of 
the stochastic theory.This results since the theory, for the most part, is concerned only, 
with the time-dependent behavior of single molecules,. However, if a molecule is applied 
to the column in the mobile phase, then the probibility that the molecule will be found 
in the mobile phase is unity at the instant of application, and asymptotically approaches 
R as time elapses. This probability is related to equilibrium; the relasation time for the 
approach of the probability to its asymptotic value is identical to the relaxation time 
for the approach of a large collection of molecules to their equilibrium values. 

The point of real interest in chromatography, however, concerns equilibrium only 
in a local sense. In any useful chromatogram, the total concentration of solute in the 
mobile phase divided by the total concentration, for any calculational purpose, equals 
R. However, at a given point on the chromatogram, local equilibrium does not obtain, 
and ,a deficiency of concentration in the mobile phase at one point is balanced by a 
surplus at another point. We will espand on these concepts in our discussion of the 
material-conservation approach, since there we will find it necessary to quantitatively 
evaluate the local non-equilibrium effects. 

3n’a previous publication, chromatography was considered as a diffusion procesP. 
Through expanding the probability density function in a Taylor series along the 
lengthwise coordinate, the diffusion concept was found to be valid whenever the 
average number of sorptions is large. The validity of the diffusion concepts can be 
more fundamentally shown by the methods used by EINSTEIN concerning Brownian 
motioxP. It iS shown in that treatment that diffusion results from a large,number of 
independent, random displacements. The conditions are the same, since each sorption 
is independent of the previous one, and the large number of them is stipulated. : 

‘When the diffusion conditions are fulfilled, the diffusion coefficient for a band on 
the column, due to kinetic effects (chromatodiffusion), is 

D= 
h,k,v2 

(7?, + 722)” 
(1) 

where z’ is the longitudinal component of flow velocity, and k1 and AZ are the average 
number of sorptions and desorptions, respectively, in unit time. 

THE MRTERIAL-CONSERVATION .4PPROACH 

Since the following treatmen.t is concerned with general systems involving reaction 
kinetics, it is necessary to putline chromatography as a kinetic system. It has been 
shown that the kinetics of chromatography can be reduced to that of simple kinetic 
analogs. The simplest one, adequate in most cases, is 

whdre A represents a molecule in the mobile phase, and B a molecule in the stationary..! 
phase. The arrpwsindicate the continuous transition between the two “configurations”. 
Th6 transition rates, 12, and lo,, have been defined. 

References fi. 52. 
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In order to discuss both the material-conservation approach and the theoretical- 
piate model, it is necessary to use a method for treating the kinetics of chemical 
systems near equilibrium. The relaxation-time model for chemical kinetics” has been 
devised for this purpose, and is easily adapted to the treatment of chromatographic 
processes. 

If the concentration, cl, of a chemical species, A, is perturbed slightly from its 
equilibrium value (more generally, from its quasi-equilibrium value), it will return to 
the equilibrium in the manner of exponential 
for this process can be easily obtainedO. 

& = c1. - Cl 
+ 

- clcl/cll 

where c1 * is the equilibrium concen.tration of A. 
Referring, now, to the kinetic model of this section, A represents a molecule4n 

the mobile phase, and its equilibrium concentration is 

relaxation. The relaxation time, tV, 

(3) 

(4) 

where c2* is the concentration of B, and the stars deoote the equilibrium. All concen- 
trations are referred to a unit volume of the overall chromatogram. For this model, 
the relaxation time is found to be 

ir = I/(/t, + kg) (5) 

Let us examine a small volume of carrier fluid as it passes along the chromatogram,. 
We will assume that the concentration, cl, in this element is near the equilibrium 

value, c 1*. However, cl+ varies as the volume element moves along the column. The 
concentration, cl, lags behind cl*, since equilibration is not instantaneous. It is shown 
elsewhere0 that the time lag is just the relasation time for equilibrium, ty. This is 
described by the equation 

Cl (z,l) = cl* (2.t - jr) (6) 

where c1 (z,t) is the concentration in the moving volume element at the point z and 
the time t. In the discussion of the theoretical plate model, it will be shown that the 
concentration c1 (z,t) may be considerkd equal to the equilibrium concentration, 
either at a titne tr past, as above, or ‘at the same time but a distance vt, (I .- R) 

upstream. 
CL (z,l) = cl,* (z- ?Jtr (I - lil),i) (7) 

From this equation it is necessary to find the equilibridm departure in the mobile 
phase, defined by dcl = cl - cl*. (This is the negative of the equilibrium departure 

in the stationary phase, since dc, + dc, = 0.) 

dc, = Cl* (z - vlr (I - R),/) - c,.* (z,t) 

(S) 

Both dc, and Bclt/&, of course, are evaluated at the distance z and time t. The latter 

relation holds for values of ty, and hence dcl, ,that are small. 

Rcfel~e?rccs p. 52. ’ 
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Fig. 1 illustrates the application 
of this equation to a solute on a 
chromstographic column. The 

Nonequilibrlum mobile phase moves in the 

direction, 2, along the column. 
It is seen that the actual con- 
centration, cl, is displaced 
downstream from the equi- 

t- librium concentration, cl*, a 
Fig. I. Schematic diagram shoxving tlIC shift Of tllC ELCtud clistance,Zlly(~__X),equi\ralent 

mobile phase concentration, cl, clownstrcam from the cqui- 

libriurn concentration, cl*. to a time, ty. The figure shows 
how the departure from local 

equilibrium varies from one point to another on the column. 
The mathematical espression of the equilibrium departure is particularly simple 

when the concentration profile. is “Gaussian” or “normal”. If we divide each side of 
equation (S) by cl* we get the fractional departure 

AC1 &ncl* 
7=--- 
Cl dz 

vlr (.I - R) (9) 

Since c1 * is a definite fraction of the total concentration, it too is Gaussian. 

* (Z-2) 3 
Cl = const. c 

_- 
zap (10) 

Whenever such a peak results from diffusion, the standard deviation and the diffusion 
coefficient are related by cr2 = z Dt. Using this and. taking the derivative 61n c,*/bz 
we have 

AC, ) = vfr (1 - I?) (2 - 2) 
Cl 2131 

(11) 
.:, 

For the A s B model we may use D from equation (I), Zy from equation (s), and as the 
fraction of time spent in the mobile phase, X = k,/(iz, + 1~~). The resulting espression is 

AC, z--F 
+=- 
Cl zi?vC ., 

the term Rv is the average velocity of the zone and this multiplied by the time t is 
the displacement of the zones center, X. The final simple result is 

AC, z---z 
t=- 
Cl 2f 

(13) 

This shows the departure from equilibrium to be a function of the distance z along 
the chromatogram. At the center of the zone it approaches zero. It can also be shown 
that at a distance u from the center of the zone, 2 - Z = u, 

AC1 I -= * (14) 
Cl zdn? 

where N is the theoretical plate number occupied by the center of the zone. .*r\he 
results given in the last two equations are valid with any kinetics as long as a ly can 
be found fo? the system. 
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,,, It can now be easily shown why the spreading (diffusion) of a band is related to 
nok-equilibrium values. At the center of the band, the departure from equilibrium is 
negligible. This portion of the bancl is displaced down the column with a velocity, 
;ii: = AZ:. On the upstream (trailing) side of the band, the concentration is less than 
equilibrium. This deficiency in the mobile phase causes this part of the band to move 
more slowly than the center. On the other hand, the surplus concentration on the 
downstream (leading) side of the band causes this part to move more rapidly than the 
center. The net result is the spreading of the two edges away from the center. 

For a quantitative formulation, we will refer our calculations to a point moving 
downstream with the average velocity of the band, 3 = Av. The flux 6f material 
through a unit area of a plane that is perpendicular to the flow direction and includes 
this point consists of contributions from all possible phases containing the solute, 

(I = z c*z4i, (15) 

where cg is the concentration in phase i, and MS is the average velocity of this phase 
with respect to the reference point: For most cases it is ample to consider just a single 
mobile phase (phase I), and a single stationary phase (phase 2). For t:le velocities in 
the last equation, we have ztl = ZJ -Z = (I -X) o, and zb2 = - Z = - Av. The 
flus, then, is 

‘I = 2, [Cl (I - R) - c,R-j (16) 

and since (cl _t- c2) equals the total concentration, c 

4 = ZJ (Cl - Rc). (17) 

Using the definition of AC, and the equilibrium exprksion, cl* = Xc, we have 

q = vAc, (1s) 

At equilibrium, of course, AC, = o and the net flus vanishes. 
The x:alue of AC, in this equation for the net flus can be obtained from equation 

(S). Substitution yields dc,’ 
(I =- 6t v”tr ( r - 12), (t9) 

and since cl+ = Xc, then CTC & 

P 
= _- 

dz 
9 2Jr’ (I - II!) = - 1. x_ (20) 

the latter relation results since D can be so defined in terms of the net flux, q. Hence 
a very general expression for the effective diffusion coefficient for this process is 

D = vz IJi! (I -l?) (21) 

This equation can be more specifically written in terms of the kinetic analog, (2). For 
this particular analog, t,. = x/(1<, -/- Ic,), and X = k,/(k, + k,). With these substitu- 
tions, (21) becomes 

h,k,V? 

lY = (I<, + k,)” 
(23) 

‘” 

a result identical to that derived from the stochastic theory. 
An approach similar to the above has been used in the description of boundary ;:.a, 

:, (, spreading in electi-ophoresislG. The mathematics of electrophoretic and chromato- 
graphic spreading are the same 13. In either case an interconversion of species exists 
with the various species moving at different velocities. The interconversion ,reaction 

.RCferetlces +. 52. 
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may be as simple as A z B or much more complicated for either electrophoresis or 
chrdmatography. When this simple reaction occurs in electrophoresis the effective D 
is the same as in equation (22) except that V~ must be replaced by (zll - v~)~. The 
latter are the respective velocities,of the ionic species. This result is not the same as” 

that obtained in the work of FIELD :~ND OGSTON~~. 

-.l’HE 1‘H~ORETIC:\L.-PI,hT@ MODEL 

The theoretical-plate model serves to relate chromatography to classical distillation, 
procedures: For a given esperiment under given conditions, the development of a 
chromatogram is related to an empirical parameter, (HETP), or the height equivalent 
to a theoretical plate. With a given column length, L, the number of theoretical plates, 
N, is simply obtained as L/(HETP). 

We will relate the parameters, (HETP) and N, directly to the kinetic parameters 
involved in the other theories. This, of course, is esceedingly useful, since the theoret- 
ical-plate model has had the disadvantage of not being related to fundamental physical 
quantities, such that, for instance, one could not find an espression for the temperature 
dependence of N even though it is known for the kinetic rates of the underlying processes. 

The theoretical-plate model is obtained by dividing the chromatogram into 
discrete, adjacent cells. The length of a cell, (HETP), is determined by the condition 
that the mean concentration in the cell is in equilibrium with its own effluent. For 
small (HETP), the concentration at the midpoint of the cell is approsimately equal 
‘to the mean concentration, Thus (HETP) is determined by the condition that the 
midpoint concentration is in equilibrium with the small volume element leaving the 
cell. However, the small volume element, according to equation (6), is in equilibrium 
with t’he point on the column crossed a time, ty, previously. Since the flow velocity 
within the column is v, this equilibrium point is the distance V& upstream, and this 
must be the distance between the, end of the cell and its midpoint 

vlr = 
(HETP) 

3 (“3) 

Thus we have 

Where L/v is t,, the passage time of the carrier through the chromatogram. This is 
the most general espression of the theoretical plate parameters in terms of kinetic 
processes. For the A -5-c I3 kinetic model, dquation (2), we have (see equation (5)) 

(I-IEV) = “-v/(/c, + k,), N = (/Q + /+) L1/2 (25) 

These equations can be easily verified, This is done simply by comparing the 
band half-width obtained by M.+YER ~YND TOMPICINS~, expressed in terms of N, to the 
half-width obtained in the use of the stochastic theory. For the A ti I3 model, the 
result is identical to (25). ._ 

It has been tacitly assumed in the foregoing treatment that the volume element 
leaving a cell is in equilibrium with the midpoint cell concentration, not as it has 
been modii?ed,by incoming fluid, but as if it had remained constant as the volume 

I?efcm1ces p. *52. 
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element moved through the cell. Thus we have treated the ML~YER AND TOMPKINS~ 
zliscontinuous flow model of chromatography. The continuous-flow model, introduced 
by MI~RTIN AND SYNGE~ in the original. theoretical plate treatment of chromatography, 
is a better physical model. Our method for relating N to the kinetic rates involves, in 
this case, the ad.ditional concept of concentration displacement. 

For a small downstream displacement of the mobile phase, say a distance VJ&, 
a given segment of the overall concentration profile will move downstream a distance 
cl~ly/(cl -k c2). Since the concentrations c,, and c2 are near their equilibrium values, 
the condentration displacement is approsimately Rvt,. The relasation-time model 
states that the concentration of a given volume element is the equilibrium concentra- 
tion of that volume element a time ty previously. At that time the volume element was 
a distance vl, upstream. I-Iowever, as the volume element moved downstream from 
this point a distance utV, the overall concentration, which determines the equilibrium, 
movccl the above quoted distance of Rvtr. The distance between these displacements, 

vty (I - R), becomes, in this formulation, the distance from the midpoint to the end 
of the cell. (HE’l:P) 

2 
= V/r (I -z?) (26) 

In this case, then (I-IETI?) = 224. (1 - n), 117 = /!,/al, (1 - I?) (27) 

and for the A a I3 model, with tl, = r/(/c, + k,) and X = 1c2/(12, + k,), we have 

(HETP) = zk,v/(l~, -t_ k,)“, N = (kL + 1~~)” l&k,. (28) 

The latter expression results when the half-width for the continuous-flow model is 
compared to that from stochastic theory. We have used an espression derived by 
SLIDES for this comparison. 

DISCUSSION 

The foregoing treatment relates both an effective diffusion coefficient and the number 
of theoretical plates to the kinetics of sorption and desorption. For practical purpose, 
it is necessary that these parameters be related to experimental procedure. This matter 
has been extensively discussed in the case of the number of theoretical platesl’. 

It is common practice to inject a sample into a chromatogram with the least 
possible spread. In the limit we may consider all molecules started simultaneously in 
the column. When, in addition, near-equilibrium conditions prevail, the concentration 
profle becomes Gaussian, both when the component is spread as a band on the column,, 
and in the column effluent. A measure of the diffusion effect is the standard deviation 
of this concentration profile. In general a procedure will become more valuable as the 
ratio of the standard deviation to the displacement from the origin (referred to the 
center of the band) becomes smallee. With a component still on the column, the 
standard deviation is a = 4zDt (Eor axiy diffusion process), and the distance of the 
band from the origin is Z == ztl = Xvt. Substituting in the appropriate values from the 
kinetic analog, (2), we find that the dimensionless ratio, i = o/E, is 

(29) 
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In the case of elution, the standard deviation is usually measured in terms of 
time. The displacement from the origin, the elution time, 1, is of the same dimensional- 
ity. For the kinetic analog, (z), the former is” ’ 

o- = (2k,lit)l”/rlz, = [zh,t/h,(lt, + /z1)]1'2 (30) 

and the ratio, 1 = a/t, is identical to (29). 

The value of 3, can be easily obtained for the theoretical-plate model. Substituting 
t, - At into (28) and comparing with (zg), we find, 3, = I/@. 

Wi.th the foregoing results, and the esperimental values for both 2 and X, ’ it is 

easy to determine the l&tic rates of transition, k, and k,. It is then possible to study 
the dependence of the transition rates upon temperature, solvent and sorbent prop- 

erties, etc. Such a study shows promise ‘of additional control over the movement of 
chromatographic zones. 

SL~MhfARY 

It has been the object of this presentation to show connecting links between the 
various theories of chromatography. The stochastic theory, the material-conservation 
ap+oach, and the theoretical-plate model are treated individually and in relation to 
one another. The last two are treated as problems in non-equilibrium kinetics, 
exemplifying the concept that it is the lack of equilibrium between the mobile and 
stationary phases that causes the smearing of individual solute bands. The source of 
the non-equilibrium, as well as the smearing effect due to’ non-equilibrium, are 
discussed both qualitatively and quantitatively. The quantitative treatment of these 
cases depends on the use of the kinetic relasstion-time model, originally devised for 
the study of non-equilibrium kinetics in the flame front. 
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